Moteur Scorpion S6540-155

Encore un nouveau moteur pour le Gambitron…

Bien que je sois très content de mon S6530-180, je suis toujours en recherche d’optimisation. Une des limitations actuelles est que le S6530-180 tourne un peu vite. Potentiellement, un moteur avec moins de KV permettrait de tourner une hélice encore plus grande, donc avec un meilleur rendement, et moins vite, donc engendrant encore moins de bruit. Dans la gamme Scorpion il existe le 6530-150, mais la puissance max serait un peu limite.

J’ai eu l’occasion d’acquérir et de tester un tout nouveau modèle, le S6540-155. Il pèse 300g de plus que le S6530 et possède un KV de 155. La puissance max est à 6000W, donc amplement suffisante pour mon utilisation.

La photo ci-dessus montre les deux moteurs. Les fixations sont identiques. Le S6540 fait 10mm de plus en longueur. L’axe d’hélice est de 10mm, alors qu’il était de 8mm pour le S6530. La longueur supplémentaire m’a obligé à une découpe de la partie avant du capot. Le moteur dépasse un peu, mais cela ne se voit pas. Les 300g de plus à l’avant sont compensés en reculant légèrement les batteries. De fait, je garde le même centrage.

Lors des premiers tests, je constate un bruit très significatif du moteur et de l’hélice, bien plus qu’avec le S6530. Pourtant, il n’y a pas de vibration dans la cellule, ni dans le bâti du moteur. Sur les conseils de Scorpion, je fais des tests sans hélice et constate un régime irrégulier et une certaine résonance. Le problème semble donc lié au contrôleur. J’ai fait des changement dans la fréquence de découpage et le timing. Avec une fréquence de 16Khz et un timing à 5 degré, la rotation semble bien plus stable. Les essais au terrain avec cette configuration donnent un niveau de bruit équivalent à ce que j’avais avant. J’ai quand même une résonance entre 4000 et 5000 tour/min qui disparait à des régimes plus élevés.

Avec ce nouveau moteur, j’ai pu tester deux hélices, une Fiala bois 25×10 et la Falcon carbone 23×10 que j’utilisai précédemment. Le planeur remorqué est le Pégase (10Kg, 5,5m) de Loïc qui sert de planeur de référence.

La Fiala 25×10 consomme un peu plus de 100A en statique, ce qui est prometteur. Par contre, elle est très bruyante. C’est loupé pour l’objectif de réduction de bruit. Une fois en vol la consommation diminue significativement comme le montre le graphe ci-dessous.

Coté bilan énergétique, c’est aussi décevant sur les trois remorquages:

Hauteur

Durée

Capacité consommée

Énergie

Énergie/m

277.1m

42s

795mah

41.9Wh

0.151
256.7m

40s

798mah

41.34Wh

0.161
252.3m

43s

848mah

43.7Wh

0.173
Moyenne

0,161

Il semble que le comportement dynamique de l’hélice ne soit pas très bon. Est-ce du au matériau ou au profil? Par contre c’est une hélice excellente pour la voltige dixit Jean-Philippe… En vol, le frein du à cette hélice est impressionnant. Il faut impérativement remettre des gaz pour l’atterrissage.

Passons à la Falcon 23×10. Elle a le même niveau de bruit que pour le S6530. C’est déjà pas mal. Le comportement en vol est le même que précédemment. La consommation statique est autour des 85A. Par contre, la consommation ne change pas brutalement lors du passage du régime statique au régime dynamique, contrairement à la Fiala.

Coté bilan énergétique, c’est très bon sur trois remorquages:

Hauteur

Durée

Capacité consommée

Énergie

Énergie/m

311m

39s

744mah

39.27Wh

0.126
281.9m

45s

786mah

40.86Wh

0.144
306.6m

40s

676mah

34.35Wh

0.112
Moyenne

0,127

La journée était assez venteuse, avec le vent de travers. Donc les conditions n’étaient pas excellentes. Malgré cela, le rendement est supérieur à celui obtenu avec le S6530 (0.139 avec la falcon 23×10).

Le bilan est donc très positif en terme de rendement, et un petit peu moins en terme de bruit. Bravo à Scorpion pour ce nouveau moteur !!!

Encore des mesures et Panne du YEP

Le contrôleur YEP n’a pas duré bien longtemps… au 4ème vol, pfff, extinction des gaz et atterrissage en plané…. Une requête a été déposée chez HK, mais j’ai peur que cela ne serve à rien…

Le coté positif de la chose (s’il en est un) a été de faire une vérification de l’utilité d’utiliser l’hélice comme aérofrein. Le contrôleur s’est plus ou moins mis en frein lors de la panne, et l’hélice ne tournait presque plus. Résultat, il a fallu aller chercher le Gambitron au bout du terrain, alors qu’il se pose très très court lorsque l’hélice tourne.

J’ai pu faire quelques mesures en vol avant la panne…

Je voulais tester l’influence du poids du modèle sur le taux de montée. Sans planeur, à la masse de 11.5Kg, le taux de montée est de 16m/s. Après avoir rajouté 800g de lest dans la clef, le taux de montée passe à 15.52m/s. Cela fait une perte de 0.6m/s par Kg. Cela n’est pas énorme, cela va permettre de mettre des batteries plus lourdes pour augmenter l’autonomie.

La vitesse de vol sol (mesurée par GPS) est de 122km/h, avec un vent de face de 10km/h, pour 7400 t/m.

En remorquage d’un fox de 3.6Kg, 2.80m, le taux de montée est de 10m/s. La vitesse de remorquage sol est de 75km/h.

Accus du Pirélec

Je viens de recevoir les accus LIFE 2500ma. Le pack sera un 15S2P de manière à pouvoir débiter une intensité de 80A sans problème. Cela fait un total de 30 éléments avec un poids de 2100g sans les connexions.

Le pack de 15S sera constitué de 2x6S + 3S. C’est la formule qui permet d’obtenir l’encombrement minimum dans l’avion. Cela permet également de recharger avec 3 chargeurs peu couteux sous forte intensité (4C).

IMGP7797

Les accus sont assemblés à la colle chaude. L’encombrement en largeur est de 12.5cm. Cela tient dans le fuseau.

IMGP7788

Les trois packs seront fixés de manière permanente sur une platine support. La platine avec accus est retirée pour la charge. Ce système permet de minimiser les opérations à l’intérieur du fuseau et de changer très rapidement le « réservoir ».

Voici les accus une fois câblés. C’est quand même pas mal de boulot… un avantage au crédit des Lipos.

IMGP7932

Les trois packs sont facilement dissociables. Le + est au dessus, et le moins en dessous.

IMGP7934

Sur les conseils de Pascal Cepeda, j’ai nettoyé les soudures à l’acétone pour éliminer les restes de flux. Ces restes peuvent provoquer de la corrosion a long terme.

Après mise sous gaine, voilà le résultat:
IMGP7935

L’accroche sur la planche support est réalisé avec du velcro de grande dimension. On peut retourner le tout, pas de problèmes.
IMGP7936

Le poids total est de 2540g.

Premiers tests, en statique. J’obtiens 81A sous 41,5V soit 3360Watts. J’espérais un petit peu plus en tension. Cela fait 2.766V par élément. En décharge jusqu’à 2.5V par élément, les accus restituent 4500 ma.

À noter, tous les paramètres sont loggués par ma Jeti DS16. C’est vraiment pratique pour l’analyse ultérieure. On peut sortir des graphes comme celui ci-dessous qui donne le nombre de tours en fonction de la consommation et de la tension de l’accu.

conso_pirelec

Aménagement du fuseau du pirelec

L’idée est de placer les différents éléments de telle manière que les accus de propulsion soient presque au centre de gravité, qui devrait être situé au niveau de la clef d’aile.

À l’avant, on a les deux accus de réception et le contrôleur moteur. Celui ci est fixé sur une règle de maçon dont les cotés ont été enlevés en biseau pour mieux rentrer au fond du fuseau. Cela fait un beau radiateur. Le collage est effectué au mastic Sicaflex.

IMGP7919

Il y a une entrée d’air via le couple moteur qui est évidé. J’ai également mis une sortie d’air sous le train d’atterrissage. Le contrôleur devrait être bien ventilé.

IMGP7930

Juste derrière, il y a le bâti support de l’accu de propulsion qui est constitué de deux tasseaux sur les cotés, une planche à l’avant pour la fixation de l’accu et deux couples pour reprendre les efforts sur le bas du fuseau.

IMGP7928

Sous l’accu de propulsion, on trouve la réception avec un récepteur Jeti R18, un MaxBec2D pour la double alim et un expandeur pour la télémétrie. Il y a 2 entrées, le MaxBec2D et la sonde moteur/altimètre.

IMGP7927

Un tasseau de bois dur collé en biais donne le positionnement arrière maximum de l’accu.

IMGP7942

Le biais permet d’insérer la planche support de l’accu et éviter qu’elle ne bouge en hauteur.
IMGP7941

Le crochet de remorquage a été réalisé en alu par Loic. Le but est d’avoir le servo solidaire du crochet pour éviter des problèmes de flexion.

IMGP7914

IMGP7912

IMGP7924

IMGP7923

L’intérêt d’un récepteur tel que le R18 est de pouvoir lui associer un satellite. Au total, il y a donc 4 antennes ce qui permet de réduire d’autant les risques de masquage. Le satellite est placé dans la dérive. À noter les antennes qui sont toujours orientées à 90 degrés.

IMGP7921

Fly Baby

J’avais envie de construire un avion à partir d’un fagot de baguettes et je me suis offert l’année dernier un Fly Baby de chez Silence Model. Après quelques mois de construction, voici le résultat :


IMGP7432

Le kit est très bien conçu et la construction ne pose aucun problème. C’est vraiment un plaisir de construire cet avion.

Pour le motoriser, j’ai choisir un axi 4120 que j’avais dans mes stocks. Je l’ai motorisé en 7 éléments LIFE 2300ma qui présentent l’avantage d’être très robustes et de pouvoir se recharger immédiatement sur le terrain. Le poids final de l’avion est de 1.8 Kg sans accus. Avec les accus (540g), j’arrive à 2.3 Kg.

J’ai mis une hélice 11×5, ce qui donne en début de décharge une consommation de 31A sous 20V. Il y a plus de 260W par Kilo, ce qui permet de tourner de belles boucles sans aucun problème.

Le comportement en vol est très sain et gentil. L’avion vole avec un filet de gaz. Par contre, il faut mettre très peu de dérive. J’avais fait l’erreur d’en mettre trop pour le premier vol, et la dérive braquée engendre un effet de piqué immédiat. Ma première PTU s’est terminée par un atterrissage prématuré, heureusement sans dégâts autres que le train un peu tordu. Avec les LIFE, je vole 6 minutes avec un peu de voltige, mais en faisant surtout de beaux passages.


IMGP7465

J’ai aussi essayé des accus LIPO 5s 5000ma en statique qui donnent une consommation de 32A sous 19.5V pour un poids de 670g. Le centrage devrait être légèrement plus avant.