Régulation pour pompe à vide Kamoer

L’intérêt de la régulation est de pouvoir une consigne en terme vide en Kpa. Pour rappel 100Kpa est égal à 1 bar.

Il faut un capteur de pression différentiel, apte à mesurer une dépression. J’ai fixé mon choix sur le MPX5100 de Freescale qui permet de mesurer jusqu’à 100Kpa, ce qui est suffisant pour mon utilisation. Le brochage est le suivant :

  1. Vout, à connecter sur une entrée analogique de l’arduino. Dans mon cas, j’ai utilisé A1, car A0 est utilisé pour les boutons.
  2. GND
  3. VCC – 5V

Pour obtenir une valeur de pression il faut multiplier la valeur mesurée au moyen d’analogRead() par 1.111.

Le fonctionnement du programme est le suivant. On règle la consigne de vide avec les touches Haut/Bas avec une précision de 0.5Kpa. J’ai mis un réglage de la calibration de la pression au 0 sur la touche Select. Le démarrage se fait par la touche Left. Cela a pour effet de mémoriser la consigne dans l’EEPROM. On la retrouve lors de la prochaine mise en route. L’arrêt moteur est sur la touche Droite.

Après démarrage le moteur tourne à fond (commande à 255), jusqu’à ce que la pression atteigne la valeur de la consigne. Cela permet de vider le sac à vide. Lorsque la consigne est atteinte, le moteur est ralenti à une valeur basse, puis la régulation prend la main. Une valeur trop basse de commande a pour effet de bloquer la pompe. 30-40 semble être le minimum. La valeur du vide va osciller autour de la consigne pour se stabiliser rapidement. La régulation est réalisée à 1Khz avec Kp=0.1.

Sur la première ligne, le LCD affiche la version du programme et la consigne de vide.

Sur la seconde ligne, le LCD affiche la valeur courante du vide, la valeur de la commande moteur, et la calibration.

Dans la vidéo suivante, on voit la régulation pour une consigne de 20.5Kpa. Le vide du sac à été réalisé dans un précédent test, la vidéo montre surtout la phase de stabilisation qui est très rapide.

 

Le code pour un shield V1 est disponible ici.

Le code pour un shield V2 est disponible ici (Merci Jean-Jacques). La différence entre les deux versions est due aux valeurs différentes des résistances pour la détection des touches.

Une utilisation commerciale n’est pas autorisée. Merci de laisser un commentaire si vous réalisez le montage.

Nomenclature des composants:

Pompe à vide silencieuse

Je voulais une pompe à vide silencieuse qui puisse tourner en permanence pour coffrer les ailes. Une fois le sac vidé de son air, la pompe n’a besoin que d’un débit très faible. Par contre, un débit plus important est utile au début.

La solution est une pompe réglable, animée par un moteur brushless. Kamoer fabrique ce genre de pompe, le modèle KVP04.  On peut l’acheter via Aliexpress.

La pompe marche sous 12V (ou 24V). La régulation est réalisée par un PWM. Kamoer recommande une fréquence entre 15Khz et 25Khz. Une valeur de 0 correspond à la puissance maximale, une valeur à 1 correspond à l’arrêt.

La commande de la pompe peut être facilement réalisée par un arduino alimenté sous 12V. Un shield avec un LCD et quelques boutons permettent le réglage de la pompe par l’utilisateur.

Le LCD est contrôlé par les pins D4 à D9. Les boutons utilisent l’entrée analogique A0. Le PWM utilise la sortie D11 et le Timer 2. En modifiant la fréquence de base du timer (diviseur de la fréquence de base), on peut atteindre 3,9Khz.

La pompe est connectée à l’arduino par 3 fils: le PWM sur D11, le 0v et le 12V sur le connecteur d’alimentation.

Le programme de commande est très simple. Le contrôle de la pompe se fait avec une valeur entre 0 (arrêt) et 255 (débit max). Un appui sur les boutons permet de modifier la valeur de la commande.

#include <LiquidCrystal.h>

// initialize the library with the interface pins
LiquidCrystal lcd(8, 9, 4, 5, 6, 7);
int Pin = 11;
int i = 0;

void setup()
{
  Serial.begin(9600); 

  // set up the LCD's number of columns and rows:
  lcd.begin(16, 2);
  lcd.setCursor(0, 0);
  lcd.print("Pump V0.1");

  //TCCR2B = TCCR2B & B11111000 | B00000001; // set timer 2 divisor to 1 for PWM frequency of 31372.55 Hz
  TCCR2B = TCCR2B & B11111000 | B00000010; // set timer 2 divisor to 8 for PWM frequency of 3921.16 Hz
  pinMode(Pin, OUTPUT);
}

void loop()
{
  // acquisition des boutons
  double val = analogRead(0);

  lcd.setCursor(0, 1);
  lcd.print(" ");
  lcd.setCursor(0, 1);
  lcd.print(String(i));

  // touche reset
  if (val > 630 && val < 650)
  i = 0;

  // touche max
  if (val > 400 && val < 420)
  i = 255;

  // touche up
  if (val > 90 && val < 110)
  {
    if (i < 255)
      i++;
  }
  // touche down
  else if (val > 250 && val < 260)
  {
    if (i > 0)
      i--;
  }

  // controle du PWM
  analogWrite (Pin, 255 - i);
  delay(200);
}

Lorsque la pompe est utilisée au débit max, elle fait un peu de bruit mais c’est très raisonnable. Je vide le sac en 5 minutes.

Une fois le sac vidé, la pompe tourne très peu et est quasi silencieuse.

Je coffre avec 0,1bar de dépression, ce que j’obtiens avec une valeur de 29 pour la commande.

L’étape suivante sera de rajouter un capteur de (dé)pression et une régulation de la commande autour d’une valeur de consigne en KPa.

 

 

Bataille d’accus: Gion 3S2P (6200ma, 300g) vs Graphène 3S (2200ma, 200g).

Je voulais tester les Gion vendus par Guindeuil. Le faible poids et la forte capacité sont très intéressantes pour mon Tundra et l’écolage. J’ai pris des 2P pour avoir un centrage correct. Les 100g de plus ne sont pas un problème pour ce modèle.
Avec les GION, en début de décharge, j’obtiens 34A pour 11,13V (3,71V par élément) avec les gaz à fond. En vol stabilisé, 7-8A sont nécessaires. À la capacité de 3600ma, l’accu donne encore 29A gaz à fond. J’ai arrêté les vols après 3 tours d’écolage lorsque la remise des gaz est devenue mole, soit à 9,3V, (3,1V par élément). La capacité rendue est de 4791ma, soit 77% de la capacité annoncée.
Avec le graphène, en début de décharge, j’obtiens 39A sous 12,08V (4,02V par élément) avec les gaz à fond. J’ai arrêté le vol à 75% de la capacité de l’accu, soit 1690 ma. J’ai encore 30A sous 10,73V (3,53V). L’accu est encore loin d’être à plat.

Prix

Les Gion coutent 65 euros chez Guindeuil. Les Graphène sont à 25 euros chez Hobbyking.

Conclusion

Les GION sont intéressants pour leur capacité et leur durée de vie très longue. Par contre, en fin d’accu on n’a plus beaucoup de puissance. Pour la puissance pure, le graphène reste supérieur.  Comme l’accu est neuf, il parait qu’une amélioration est attendre après rodage. Je referai le test dans quelques temps.

Un petit Mirage III en polystyrène et dépron

Je voulais faire un petit mirage III pour une turbine en 3S. Au départ, je voulais quelque chose de simple à faire, mais au fur et à mesure de la conception et de la réalisation, j’ai un peu complexifié la partie avant pour ressembler au réel. Celui qui ressemble le plus est un Mirage III-C. En fait, il y a eu deux versions, la première ayant crashé lors du 2ième vol par faute d’une catapulte pas assez tendue.

Le mirage III est prévu pour une turbine Changesun 50mm de 11 Pales avec un Moteur 4900Kv 3S, vendue par turbines-rc.com. La batterie est une 3S 2200ma graphène qui assure une autonomie supérieure à 5 minutes.

L’envergure du mirage est de 50cm, la longueur du fuselage est de 65cm. En début de pack, la consommation monte au dessus de 40A pour 470W de puissance. Il y a donc de la puissance à revendre.

La conception est faite en 3D sous fusion 360 à partir de photos et plan 3 vues. Voici le résultat:

Le mirage est conçu autour de la turbine et du pack d’accus qui sont les éléments les plus lourd. La turbine est placée assez en arrière, et le pack est juste devant le centre de gravité. Le centrage est autour de 10-12% de l’aile delta. La limite arrière du positionnement du pack est imposée par le « V » du fuselage quand les deux entrées d’air se rejoignent. La surface frontale des deux entrées d’air est légèrement supérieure à la surface d’entrée de la turbine (diamètre 50mm) pour une bonne alimentation en air.

Le contrôleur du moteur est placé dans une boite en dessous de l’aile qui surélève un peu pour l’atterrissage. Le récepteur est monté verticalement à l’extrémité du V, derrière la batterie.

Construction

La construction s’effectue sur la base de l’aile qui est découpée en deux parties dans du dépron de 6mm. Elle est renforcée par deux longerons pour la rigidité. Le longeron avant (version 2) est au centre de gravité et sert à renforcer l’aile au niveau de la prise en main lors du catapultage.

La découpe du fuselage est réalisée dans du polystyrène expansé. Il faut une table pas trop large et assez haute pour découper les pièces de l’avant du fuselage qui ont beaucoup de flèche.

On commence par la turbine qui est située au bord de fuite de l’aile.

La turbine et son support.

Les pièces du fuselage et de la veine d’air sont symétriques.

Découpe et collage du V de la veine d’air.

Découpe et pose des flancs du dessous du fuselage.

Collage de la turbine et pose de la tuyère de sortie. Il est important que le bord de fuite de la tuyère soit fin pour un bon rendement.

En ce qui concerne la partie avant du fuselage, je présente la version 2 du mirage. L’avant est la partie la plus complexe et il est nécessaire d’assembler plusieurs pièces pour reconstituer une verrière et le nez.

Le point de départ est la pose du dos.

Puis on rajoute le milieu. Cette pièce est très complexe et nécessite 4 étapes de découpe: le profil, la face, deux tronçonnages des cotés, évidemment de l’intérieur.

Ensuite on pose les entrées d’air. Sur la photo, on voit le mastic avant ponçage.

On complète progressivement avec les autres pièces.

Jusqu’à la mise en place du nez.

Les servos d’élevons (9g) sont à moitiés encastrés dans l’aile par fraisage. Ils sont positionnés juste à l’arrière du longeron principal et sont collés à la colle bi-composant.

Les palonniers sont en fibre de verre.

L’articulation des élevons est réalisée à la fibre de verre encollée avec de la colle universelle diluée dans de l’alcool à bruler. La fibre est ensuite mastiquée au polyfilla dilué dans de l’eau. Une fois que c’est sec, on peut réaliser l’entaille en V pour l’articulation.

Le crochet de catapultage est situé en avant du bord d’attaque. Il est fixé dans une plaque de contre-plaqué qui reprend les effort. La contrainte sur le positionnement du crochet est qu’il faut pouvoir retirer l’accu.

L’accu est fixé par une bande de velcro sur un faux plancher en dépron 6mm. Le pouvoir de fixation est très fort, et il n’en faut pas une grande longueur sinon on ne peut plus retirer l’accu.

Le dessous est réalisé en dépron 3mm. La trappe accu est fermée par un aimant, et une rondelle en métal.

La trappe est articulée par un morceau de scotch pour le moment. Je referai en fibre.

Finition

La finition est réalisée en enduisant le polystyrène avec du mastic ultra léger type Polyfilla, puis ponçage. Plusieurs couches sont nécessaires pour enlever la majorité des défauts.

Le modèle est peint ensuite avec de la peinture acrylique qui est passée au pinceau. Les cocardes sont imprimées à l’imprimante jet d’encre, découpées puis collées à la colle universelle.

Je me suis inspiré de la décoration d’un mirage IIIC de l’escadron 02/100 « Seine » en 1978.

Je n’ai pas trouvé le même bleu, pas simple avec le confinement. Le dessous est blanc pour le moment. Mais ce n’est pas assez visible en vol. Il faudrait des bandes jaunes ou rouges.

 

Électronique

Le moteur consomme 40A en pointe. J’ai donc surdimensionné le contrôleur en choisissant un 60A que j’avais en stock, car le poids n’est pas trop un problème à cet endroit. Par ailleurs, le contrôleur n’est pas accessible une fois le dessous collé… et il n’est pas trop ventilé également.

Le moteur est surpuissant. Voici un test en statique (avec la version 1):

Le récepteur est un Jeti Rex6 assist. Il est tout petit et le gyroscope intégré permet de stabiliser le modèle au lancement. Le problème majeur de ce genre de modèle est que la puissance de la turbine est telle qu’elle induit un effet de roulis lorsqu’on met les gaz. Le gyro permet de calmer la bestiole.

Poids

Le poids du modèle en ordre de vol est de 475g, dont:

  • contrôleur, 50g
  • récepteur, 11g
  • servos, 18g
  • turbine et moteur, 80g
  • batterie 2200ma graphène 3S, 190g.

Vol

Voici la vidéo du premier vol de la version 2.

Il faut tendre fortement la catapulte pour donner la vitesse initiale au modèle (environ 25 pas). Sinon il s’enfonce et c’est le crash assuré. C’est d’ailleurs ce qui est arrivé à la version 1.

Le vol est très rapide. J’ai mesuré une vitesse de 126Km/h avec un GPS.

À l’issue de ce premier vol, il restait plus de 30% dans les accus. J’ai donc une autonomie supérieure à 5 minutes en jouant sur les gaz.

Il reste à régler le gyro qui surcompense pour le moment et le débattement des ailerons qui est encore trop important.

 

Fichiers de découpe

Les fichiers de découpe pour GMFC PRO sont disponibles ici.

KungFu

Je cherchai depuis quelques temps un modèle facile à réaliser pour se défouler sur le terrain avec les copains…

La KungFu m’a tapée dans l’œil. Un grand merci a Thomas Buchwald et Laurent Berlivet:
http://jivaro-models.org/kungfu/page_kungfu.html

Comme je ne suis pas un fan de la découpe au cutter et que je préfère évidemment la découpe au fil chaud, je suis reparti du plan (merci Laurent) et j’en ai fait ma version sous fusion 360:

La différence majeure par rapport au design original est que l’aile a un vrai profil dérivé de l’Eppler 182 et épaissi au bord de fuite pour donner de la rigidité. J’ai aussi modifié l’avant en mettant des encoches pour simplifier la construction. Le dessous est également prévu pour du dépron 3mm à la place du 6mm.

L’aile est découpée dans du polystyrène expansé. Les fichiers de découpe sont disponibles pour GMFC EXPERT et PRO. J’ai mis un plat de carbone de 3mm comme longeron. Le longeron est orthogonal et doit être découpé de manière séparée. C’est donc plus facile à réaliser avec GMFC EXPERT.

J’ai également fait un couple moteur en DXF, si vous avez accès à une fraiseuse.

Les fichiers de découpe sont disponible via ce lien

La trappe à batterie est articulée par du scotch fibrée. Elle est maintenue fermée par un aimant et une rondelle en métal.

Les servos sont encastrés dans l’aile. Un peu de fraisage à la miniperceuse, et le tour est joué.

Pour coller le polystyrène et le dépron, j’utilise de la colle universelle Tesa.

Le moteur est un Dualsky Eco 2308C V2 (47g, 1500kv, 184W), l’hélice est une APC Thin Electric 7×5.

Tout équipée, l’aile pèse 217g. J’utilise une batterie 3S graphène 1000ma qui pèse 105g. Avec cette configuration, je fais des vols de 10 minutes.

La KungFu est à la fois rapide et stable. Que du plaisir. Merci à Thomas et Laurent.

Pour conclure voici une petite décoration à la peinture acrylique…